
TESTIRANJE SOFTVERA (13S113TS)
LABORATORIJSKA VEŽBA:

ALATI ZA MOCK I MUTACIONO TESTIRANJE

Prof. dr Dražen Drašković
Mast. inž. Nikola Stanković

Univerzitet u Beogradu - Elektrotehnički fakultet
1

TEST DUBLERI (1)

▪ Želimo da testiramo metodu fetchAndFilterData servisa Servis A.

▪ Ova metoda poziva metodu getData objekta za pristup bazi podataka (Data
Access Object) kako bi dobila podatke koje dalje treba da obradi i filtrira.
Servis A zbog toga zavisi od DAO objekta.

2

Baza
podataka

Servis A
Data

Access
Object

1. getData()

2.

SELECT …

FROM …

3. {DATA}4. {DATA}

0. fetchAndFilterData()

5. Filter {DATA}

6. {FILTERED DATA}

?

TEST DUBLERI (2)

▪ Ako želimo jedinično da testiramo Servis A (da izolujemo zavisnosti), kako
da budemo sigurni da DAO objekat uopšte koristi dobar upit za dohvatanje
podataka iz baze?

▪ Moramo se osigurati da to bude slučaj – koristimo test dublere.

▪ Eksplicitno definišemo ponašanje test dublera – ako se desi A, uradi B.

3

Servis A
DAO Test
Double

1. getData()

2. {DATA}

0. fetchAndFilterData()

3. Filter {DATA}

4. {FILTERED DATA}

Kada neko pozove
getData(), vraćam

ove podatke za koje
garantujem da su

ispravni.

MOCKITO FRAMEWORK

▪ Mockito je radni okvir dizajniran za Javu, koji omogućava kreiranje i upravljanje
test dublerima pri jediničnom testiranju.

▪ U Mockito-u su mogući sledeći test dubleri:

- Stubs (stab) - objekat sa predefinisanom povratnom vrednošću koju metod
treba da vrati tokom testa

- Spies (špijuni) - objekti slični stabovima, ali dodatno se beleži kako su izvršeni
(trace)

- Mocks (mokovi) - objekti koji imaju povratne vrednosti izvršenih metoda tokom
testa i beleže kako su izvršeni, a takođe mogu izbaciti i izuzetak ako prime
neočekivani poziv. Možemo mock-ovati i cele interfejse i klase.

4

RAD SA MOCK OBJEKTIMA (1)

▪ Za kreiranje mock objekta se koristi statička metoda mock iz biblioteke Mockito.
Metodi se prosleđuje klasa čiji objekat želi da se mock-uje.

▪ Klasa koja se testira (Calculator) je parametrizovana objektom ResultStorage.
Zapravo se inject-uje objekat Calculator klase ovim mock objektom.

5

Ne zaboraviti zavisnost u pom.xml!

@Test

void add_shouldStoreSum() {

ResultStorage storage = mock(ResultStorage.class);

when(storage.get()).thenReturn(10);

Calculator calculator = new Calculator(storage);

calculator.add(5);

verify(storage).get();

verify(storage).set(15);

}

RAD SA MOCK OBJEKTIMA (2)

▪ Mock objektu eksplicitno definišemo ponašanje metodama when i thenReturn.

▪ Kao argument when metode se prosleđuje poziv koji treba da izazove akciju
mock objekta (šta taj mock objekat treba da vrati po pozivu metode). Podatak
koji mock objekat vraća se definiše kao argument metode thenReturn.

6

@Test

void add_shouldStoreSum() {

ResultStorage storage = mock(ResultStorage.class);

when(storage.get()).thenReturn(10);

Calculator calculator = new Calculator(storage);

calculator.add(5);

verify(storage).get();

verify(storage).set(15);

}

RAD SA MOCK OBJEKTIMA (3)

▪ Treba proveriti da li je metoda koja se testira interagovala ispravno sa mock
objektom, odnosno da li je pozvala sve metode mock objekta koje je trebalo da
pozove.

▪ To proveravamo pozivom metode verify sa argumentom koji je mock objekat, nad
kojom se poziva konkretna metoda za koju ispitujemo da li se pozvala za mock.

7

@Test

void add_shouldStoreSum() {

ResultStorage storage = mock(ResultStorage.class);

when(storage.get()).thenReturn(10);

Calculator calculator = new Calculator(storage);

calculator.add(5);

verify(storage).get();

verify(storage).set(15);

}

▪ Ovim testom smo definisali da mock objekat treba da vrati 10 kada se pozove
njegova metoda get, a nakon poziva metode calculator.add koju testiramo,
proverili smo da li su get i set metode mock objekta pozvane u add metodi.

RAD SA MOCK OBJEKTIMA (4)

▪ Može se eksplicitno definisati da metoda mock objekta ne sme nijednom da se
pozove:

8

verify(storage, never()).get();

▪ Argument koji se prosleđuje mock objektu prilikom poziva ne mora da bude
konkretna vrednost, već može da bude čitav opseg, npr. bilo koji ceo broj:

verify(storage).set(anyInt());

▪ Može se eksplicitno definisati da metoda mock objekta mora da se pozove tačno
određeni broj puta:

verify(storage, times(3)).get();

▪ Može se eksplicitno definisati da metoda mock objekta mora da se pozove bar
jedanput:

verify(storage, atLeastOnce()).get();

MUTACIONO TESTIRANJE

▪ Mutaciono testiranje određuje kvalitet skupa napisanih testova, tako što
određuje koliko su testovi dobri u otkrivanju mutanata originalnog
programskog koda.

▪ Potrebno je napraviti mutante originalnog programa, mutiranjem određenih
iskaza i naredbi.

▪ Potom se za svaki test primer proverava da li je ponašanje testa identično za
originalni program i za mutanta. Ukoliko jeste, mutant je preživeo, i samim
tim test nije visokog kvaliteta. Ukoliko se izvršavanje razlikuje, test primer je
otkrio mutanta i zbog toga se smatra dobrim test primerom.

▪ Proverom svih test primera za svakog mutanta, određuje se mutacioni skor –
metrika koja na skali od 0 do 1 određuje kvalitet skupa test primera. Što je
mutacioni skor veći, to je skup test primera bolji.

9

𝑀𝑆 𝑇 =
𝐷

𝐿 + |𝐷|

PIT FRAMEWORK (1)

▪ PIT je Java framework koji omogućava mutaciono testiranje.

▪ Pre upotrebe, potrebno je definisati zavisnosti u pom.xml fajlu.

▪ U izvornom obliku, PIT framework nema podršku za JUnit 5 (i 6) biblioteku, tako
da je potrebno definisati i zavisnost ka plugin-u za JUnit 5 (ujednno i za 6).

10

<!-- PIT -->

<dependency>

<groupId>org.pitest</groupId>

<artifactId>pitest</artifactId>

<version>1.22.0</version>

</dependency>

<!-- PIT JUnit 5 Plugin -->

<dependency>

<groupId>org.pitest</groupId>

<artifactId>pitest-junit5-plugin</artifactId>

<version>1.2.3</version>

<scope>test</scope>

</dependency>

PIT FRAMEWORK (2)

▪ U pom.xml fajlu treba definisati koja je to klasa čiji se mutanti prave
(targetClasses) i koji su to testovi za datu klasu koje treba izvršiti (targetTests).

11

<build>

<plugins>

<plugin>

<groupId>org.pitest</groupId>

<artifactId>pitest-maven</artifactId>

<version>1.22.0</version>

<configuration>

<targetClasses>

<param>rs.etf.ts.calculator.Calculator</param>

</targetClasses>

<targetTests>

<param>rs.etf.ts.calculator.CalculatorTests</param>

</targetTests>

</configuration>

</plugin>

</plugins>

</build>

MUTACIONO TESTIRANJE SA PIT-OM (1)

▪ Pokretanje analize:

1. Odabrati View/Tool Windows/Maven opciju u meniju i proširiti tekući Maven
projekat.

2. Proširiti Plugins sekciju, pa isto tako i pitest sekciju.

3. Duplim klikom na pitest:mutationCoverage se pokreće plugin za analizu
mutacionog skora i generisani izveštaj se smešta u target/pit-reports
direktorijum u okviru projekta.

12

▪ Ovo će izvršiti mutaciono
testiranje nad klasom ili klasama
testova koje su navedene u
targetTests tagu pom.xml-a.

MUTACIONO TESTIRANJE SA PIT-OM (2)

▪ Preduslovi za pokretanje:

1. Testovi u klasama testova se prvo moraju odvojeno pokrenuti, pre pokretanja
plugin-a za analizu.

2. Svi testovi moraju da uspešno prolaze (green tests), kako bi uopšte mogla da se
sprovede komparacija izvršavanja nad originalnim programom i mutantima.

▪ Primer ispisa u konzoli nakon izvršavanja:

13

===

- Statistics

===

>> Line Coverage (for mutated classes only): 28/40 (70%)

>> 1 tests examined

>> Generated 24 mutations Killed 13 (54%)

>> Mutations with no coverage 8. Test strength 81%

>> Ran 28 tests (1.17 tests per mutation)
13 (ubijenih mutanata)

--- = 0.81
24 (ukupno) – 8 (bez pokrivenosti)

MUTACIONO TESTIRANJE SA PIT-OM (3)

▪ Izveštaju analize se pristupa preko index.html stranice u generisanom pit-report
direktorijumu:

14

▪ Broj označen plavom bojom

pored odgovarajuće linije

predstavlja broj mutanata koji

je generisan na osnovu te

linije.

▪ Hover preko datog broja

prikazuje koja mutacija je

izvršena kao i status mutanta

na kraju analize.

MUTACIONO TESTIRANJE SA PIT-OM (4)

▪ U izveštaju se u sekciji za mutacije može videti status svih generisanih mutanata.

15

▪ Mogući statusi mutanata:

- Killed – mutant detektovan

- Survived – mutant nije detektovan

- No coverage – nijedan test nije izvršio
datu metodu čiji je mutant kreiran

- Non viable – nevalidan bajtkod za JVM
datog mutanta (ne može da se izvrši)

- Timed out – predugo izvršavanje, npr.
mutacijom se generisala beskonačna
petlja

- Memory error – previše memorije iskorišćeno, npr. call stack se prepunio u mutantu

- Run error – greška pri izvršavanju mutanta

▪ Treba imati što manje mutanata čiji je status Survived ili No coverage! Na osnovu
generisanog izveštaja treba dodati nove ili izmeniti postojeće testove tako da se
mutacioni skor poveća.

MUTACIONO TESTIRANJE SA PIT-OM (5)

▪ Na kraju izveštaja su navedene sve mutacije koje su dolazile u obzir prilikom
generisanja mutanata. Podrazumevano ima 11 tipova mutacija i to su:

16

1. Conditionals Boundary – mutacija relacionih operatora (<,
<=, >, >=)

2. Empty Returns – vraća „praznu“ vrednost u zavisnosti od
tipa povratne vrednosti (0, prazan string, prazna lista, …)

3. False Returns – vraća False kao povratnu vrednost za
metode ako im je tip povratne vrednosti boolean

4. True Returns – vraća True kao povratnu vrednost za
metode ako im je tip povratne vrednosti boolean

5. Null Returns – vraća Null kao povratnu vrednost

6. Primitive Returns – vraća 0 ukoliko je tip povratne
vrednosti int, short, long, char, float ili double

MUTACIONO TESTIRANJE SA PIT-OM (6)

▪ Na kraju izveštaja su navedene sve mutacije koje su dolazile u obzir prilikom
generisanja mutanata. Podrazumevano ima 11 tipova mutacija i to su:

17

7. Increments – menja inkrement sa dekrementom i obrnuto
(i++, ++i, i--, --i)

8. Invert Negatives – uklanja minus kod negiranih
promenljivih (npr. –i se mutira u i)

9. Math – mutacija aritmetičkih operatora (+ u -; - u +; * u /; /
u *; % u *; & u |; | u &; ^ u &; << u >>; >> u <<; >>> u <<)

10. Negate Conditionals – slično mutaciji relacionih operatora,
ali se mutira u kontra uslov (== u !=; != u ==; > u <=; >= u <;
< u >=; <= u >)

11. Void Method Calls – uklanjanje poziva metode koja nema
povratnu vrednost (void)

MUTACIONO TESTIRANJE SA PIT-OM (7)

▪ Mutacije koje se uzimaju u obzir se mogu konfigurisati u pom.xml fajlu:

18

<configuration>

<mutators>

<mutator>PAKET_MUTACIJA</mutator>

</mutators>

</configuration>

▪ Pri čemu paketi mutacija mogu biti:

- DEFAULTS (podrazumevano)

- OLD_DEFAULTS

- STRONGER

- ALL

KORISNI LINKOVI

▪ Mockito dokumentacija:

https://javadoc.io/doc/org.mockito/mockitocore/latest/org.mockito/org/mockito/Mockito.html

19

▪ PIT dokumentacija:

https://pitest.org/quickstart/

▪ Više informacija o mutacionim operatorima PIT alata:

https://pitest.org/quickstart/mutators/

https://javadoc.io/doc/org.mockito/mockito-core/latest/org.mockito/org/mockito/Mockito.html
https://pitest.org/quickstart/
https://pitest.org/quickstart/mutators/

HVALA NA PAŽNJI! ☺

PITANJA ?

Kontakt predavača:

drazen.draskovic@etf.bg.ac.rs

nikolas@etf.bg.ac.rs

mailto:drazen.draskovic@etf.bg.ac.rs
mailto:nikolas@etf.bg.ac.rs

	Slide 1
	Slide 2: TEST DUBLERI (1)
	Slide 3: TEST DUBLERI (2)
	Slide 4: MOCKITO FRAMEWORK
	Slide 5: RAD SA MOCK OBJEKTIMA (1)
	Slide 6: RAD SA MOCK OBJEKTIMA (2)
	Slide 7: RAD SA MOCK OBJEKTIMA (3)
	Slide 8: RAD SA MOCK OBJEKTIMA (4)
	Slide 9: MUTACIONO TESTIRANJE
	Slide 10: PIT FRAMEWORK (1)
	Slide 11: PIT FRAMEWORK (2)
	Slide 12: MUTACIONO TESTIRANJE SA PIT-OM (1)
	Slide 13: MUTACIONO TESTIRANJE SA PIT-OM (2)
	Slide 14: MUTACIONO TESTIRANJE SA PIT-OM (3)
	Slide 15: MUTACIONO TESTIRANJE SA PIT-OM (4)
	Slide 16: MUTACIONO TESTIRANJE SA PIT-OM (5)
	Slide 17: MUTACIONO TESTIRANJE SA PIT-OM (6)
	Slide 18: MUTACIONO TESTIRANJE SA PIT-OM (7)
	Slide 19: KORISNI LINKOVI
	Slide 20: HVALA NA PAŽNJI! 

