TESTIRANJE SOFTVERA (135113TS)
LABORATORIJSKA VEZBA:
ALATI ZA MOCK | MUTACIONO TESTIRANIJE

Prof. dr Drazen Draskovic
Mast. inz. Nikola Stankovié

Univerzitet u Beogradu - Elektrotehnicki fakultet

TEST DUBLERI (1)

= Zelimo da testiramo metodu fetchAndFilterData servisa Servis A.

= (Ova metoda poziva metodu getData objekta za pristup bazi podataka (Data
Access Object) kako bi dobila podatke koje dalje treba da obradi i filtrira.
Servis A zbog toga zavisi od DAO objekta.

0. fetchAndFilterData()

2.
SELECT ... o
1. getData() FROM ... °
Af | Baza
4. {DATA} 3. {DATA} podataka

5. Filter {DATA}

6. {FILTERED DATA}

TEST DUBLERI (2)

= Ako Zelimo jedini¢no da testiramo Servis A (da izolujemo zavisnosti), kako

da budemo sigurni da DAO objekat uopste koristi dobar upit za dohvatanje
podataka iz baze?

= Moramo se osigurati da to bude slucaj — koristimo test dublere.

= Eksplicitno definiSemo ponasanje test dublera — ako se desi A, uradi B.

Kada neko pozove
getData(), vraéam

ove podatke za koje \
garantujem da su

ispravni.

0. fetchAndFilterData()

1. getData() DAO Test

Double

2. {DATA}

3. Filter {DATA}
4. {FILTERED DATA}

MOCKITO FRAMEWORK

= Mockito je radni okvir dizajniran za Javu, koji omogucava kreiranje i upravljanje
test dublerima pri jedinicnom testiranju.

= U Mockito-u su moguci slededi test dubleri:

- Stubs (stab) - objekat sa predefinisanom povratnom vrednosc¢u koju metod
treba da vrati tokom testa

- Spies (Spijuni) - objekti slicni stabovima, ali dodatno se belezi kako su izvrseni
(trace)

- Mocks (mokovi) - objekti koji imaju povratne vrednosti izvrSenih metoda tokom
testa i beleze kako su izvrseni, a takode mogu izbaciti i izuzetak ako prime
neocCekivani poziv. Mozemo mock-ovati i cele interfejse i klase.

B

P ~~ < R <3 R

e R Vd B vy N

_ _ /" Mock / \ / \
' | ' | |/ dependencies | Execute code | Validate if the
‘ Stubs ‘ ‘ Mocks ‘ . fortheclass —— intheclass ——— Code executed |
\ \ J \ under . \ undertest | asexpected |

\ test A \\ y A A

N / N / < /
¥
Dummy ‘ ‘ Fake ‘ ‘ Stub ‘ ‘ Spy ‘ ‘ Mock ‘

RAD SA MOCK OBJEKTIMA (1)

= Za kreiranje mock objekta se koristi staticka metoda mock iz biblioteke Mockito.
Metodi se prosleduje klasa Ciji objekat zeli da se mock-uje.

Klasa koja se testira (Calculator) je parametrizovana objektom ResultStorage.
Zapravo se inject-uje objekat Calculator klase ovim mock objektom.

@Test
void add shouldStoreSum() {

ResultStorage storage = mock(ResultStorage.class)
when (storage.get ()) .thenReturn (10) ;

Calculator calculator = new Calculator (storage) ;
calculator.add(b) ;

verify(storage) .get () ;
verify(storage) .set (15);

Ne zaboraviti zavisnost u pom.xml!

RAD SA MOCK OBJEKTIMA (2)

= Mock objektu eksplicitno definiSemo ponasanje metodama when i thenReturn.

= Kao argument when metode se prosleduje poziv koji treba da izazove akciju
mock objekta (Sta taj mock objekat treba da vrati po pozivu metode). Podatak
koji mock objekat vraca se definise kao argument metode thenReturn.

@Test

void add shouldStoreSum() {
ResultStorage storage = mock (ResultStorage.class);
when (storage.get()) . thenReturn(10) ;

Calculator calculator = new Calculator(storage);
calculator.add(b) ;

verify(storage) .get () ;
verify(storage) .set (15);

when

(methodcallwithparameters) result

RAD SA MOCK OBJEKTIMA (3)

Treba proveriti da li je metoda koja se testira interagovala ispravno sa mock

objektom, odnosno da li je pozvala sve metode mock objekta koje je trebalo da
pozove.

To proveravamo pozivom metode verify sa argumentom koji je mock objekat, nad
kojom se poziva konkretna metoda za koju ispitujemo da li se pozvala za mock.

@Test
void add shouldStoreSum() {

ResultStorage storage = mock (ResultStorage.class);
when (storage.get ()) .thenReturn (10) ;

Calculator calculator = new Calculator (storage);
calculator.add(b) ;

verify(storage) .get () ;
verify(storage) .set (15) ;

}

= QOvim testom smo definisali da mock objekat treba da vrati 10 kada se pozove
njegova metoda get, a nakon poziva metode calculator.add koju testiramo,
proverili smo da li su get i set metode mock objekta pozvane u add metodi.

RAD SA MOCK OBJEKTIMA (4)

= Moze se eksplicitno definisati da metoda mock objekta ne sme nijednom da se
pozove:

verify(storage, never()) .get();

= Moze se eksplicitno definisati da metoda mock objekta mora da se pozove tacno
odredeni broj puta:

verify(storage, times(3)).get();

= Moze se eksplicitno definisati da metoda mock objekta mora da se pozove bar
jedanput:

verify(storage, atLeastOnce()) .get ()

= Argument koji se prosleduje mock objektu prilikom poziva ne mora da bude
konkretna vrednost, ve¢ moze da bude Citav opseg, npr. bilo koji ceo broj:

verify(storage) .set (anyInt()) ;

MUTACIONO TESTIRANIJE

= Mutaciono testiranje odreduje kvalitet skupa napisanih testova, tako sto
odreduje koliko su testovi dobri u otkrivanju mutanata originalnog
programskog koda.

= Potrebno je napraviti mutante originalnog programa, mutiranjem odredenih
iskaza i naredbi.

= Potom se za svaki test primer proverava da li je ponasanje testa identi¢no za
originalni program i za mutanta. Ukoliko jeste, mutant je preziveo, i samim
tim test nije visokog kvaliteta. Ukoliko se izvrSavanje razlikuje, test primer je
otkrio mutanta i zbog toga se smatra dobrim test primerom.

" Proverom svih test primera za svakog mutanta, odreduje se mutacioni skor—
metrika koja na skali od 0 do 1 odreduje kvalitet skupa test primera. Sto je
mutacioni skor vedi, to je skup test primera bolji.

D

MS(T) = ————
SO =10+ D)

PIT FRAMEWORK (1)

= PIT je Java framework koji omogucava mutaciono testiranje.

" Pre upotrebe, potrebno je definisati zavisnosti u pom.xml fajlu.

= Uizvornom obliku, PIT framework nema podrsku za JUnit 5 (i 6) biblioteku, tako
da je potrebno definisati i zavisnost ka plugin-u za JUnit 5 (ujednno i za 6).

<!-— PIT -->

<dependency>
<groupld>org.pitest</groupId>
<artifactId>pitest</artifactId>
<version>1.22.0</version>

</dependency>

<!-- PIT JUnit 5 Plugin -->

<dependency>
<groupld>org.pitest</groupId>
<artifactId>pitest-junitS5-plugin</artifactId>
<version>1.2.3</version>
<scope>test</scope>

</dependency>

10

PIT FRAMEWORK (2)

= U pom.xml fajlu treba definisati koja je to klasa Ciji se mutanti prave
(targetClasses) i koji su to testovi za datu klasu koje treba izvrsiti (targetTests).

<build>
<plugins>
<plugin>
<groupld>org.pitest</groupId>
<artifactId>pitest-maven</artifactId>
<version>1.22.0</version>
<configuration>
<targetClasses>
<param>rs.etf.ts.calculator.Calculator</param>
</targetClasses>
<targetTests>
<param>rs.etf.ts.calculator.CalculatorTests</param>
</targetTests>
</configuration>
</plugin>
</plugins>
</build>

11

MUTACIONO TESTIRANIJE SA PIT-OM (1)

= Pokretanje analize:

1. Odabrati View/Tool Windows/Maven opciju u meniju i prosiriti tekuc¢i Maven
projekat.

2. Prosiriti Plugins sekciju, pa isto tako i pitest sekciju.

Duplim klikom na pitest:mutationCoverage se pokrece plugin za analizu
mutacionog skora i generisani izvestaj se smesta u target/pit-reports
direktorijum u okviru projekta.

= Qvo Ce izvrsiti mutaciono
testiranje nad klasom ili klasama
testova koje su navedene u
targetTests tagu pom.xml-a.

12

MUTACIONO TESTIRANJE SA PIT-OM (2)

= Preduslovi za pokretanje:

1. Testovi u klasama testova se prvo moraju odvojeno pokrenuti, pre pokretanja
plugin-a za analizu.

2. Svitestovi moraju da uspesno prolaze (green tests), kako bi uopste mogla da se
sprovede komparacija izvrSavanja nad originalnim programom i mutantima.

" Primer ispisa u konzoli nakon izvrsavanja:

>> Line Coverage (for mutated classes only): 28/40 (70%)
>> 1 tests examined

>> Generated 24 mutations Killed 13 (54%)

>> Mutations with no coverage 8. Test strength 81%
>> Ran 28 tests (1.17 tests per mutation)

13 (ubijenih mutanata)
=0.81
24 (ukupno) — 8 (bez pokrivenosti)

13

MUTACIONO TESTIRANJE SA PIT-OM (3)

= |zveStaju analize se pristupa preko index.html stranice u generisanom pit-report

direktorijumu:
Pit Test Coverage Report
Package Summary
C a lc u l atO r..] av a rs.etf.ts.calculator
Number of Classes Line Coverage ion Coverage Test Strength
1 70% | 28/40 | 54% | 13724 | 81% | 13116 \
1 package rs.etf.ts.calculator; Breakdown by Class
2 import rs.etf.ts.storage.*; Name Line Coverage Mutation Coverage Test Strength
3 Calculatorjava 70% | 2840 [] 54%] 1324 | 81%| 13116]
4 public class Calculator {
5
6 private final ResultStorage storage;
7
8 public Calculator(ResultStorage storage) { . . .
9 this.storage = storage; = Broj oznacen plavom bojom
1e T . T
11 pored odgovarajuce linije
12 nuhlic waid addfint) £ . . .
13 1. add : Replaced integer addition with subtraction = KILLED predStaVIJa brOJ mUtanata kOJI
141 . .
151 storage.set(result); Je generlsan na OS”OVU te
16 " s
R linije.
18 public void substract(int n) { H
19 int result = storage.get(); " Hover preko datog brOJa
201 result = result - 1; // BUG: should subtract n 1 1 1 " 1
211 storage.set(result); prlkaZUJe kOJa mUtaCIJa Je
= - izvrSena kao i status mutanta

na kraju analize.

14

MUTACIONO TESTIRANIJE SA PIT-OM (4)

= U izvestaju se u sekciji za mutacije moze videti status svih generisanih mutanata.

= Mogudi statusi mutanata:

- Killed — mutant detektovan Mutations

. Replaced integer addition with subtraction » KILLED

removed call to rs/etf/ts/storage/ResultStorage::set = KILLED
Replaced integer subtraction with addition =+ NO_COVERAGE

removed call to rs/etf/ts/storage/ResultStorage::set =+ NO_COVERAGE
Replaced integer subtraction with addition + KILLED

removed call to rs/etf/ts/storage/ResultStorage::set = KILLED
Replaced integer multiplication with division -+ KILLED

removed call to rs/etf/ts/storage/ResultStorage::set » KILLED
Replaced integer division with multiplication -+ KILLED

removed call to rs/etf/ts/storage/ResultStorage::set » KILLED
Replaced integer multiplication with division -+ NO_COVERAGE
removed call to rs/etf/ts/storage/ResultStorage::set » NO_COVERAGE

negated conditional =+ NO_COVERAGE
changed conditional boundary = NO_COVERAGE

removed call to rs/etf/ts/storage/ResultStorage::set =+ NO_COVERAGE

- Survived — mutant nije detektovan

- No coverage — nijedan test nije izvrsio
datu metodu diji je mutant kreiran

- Non viable — nevalidan bajtkod za JVM
datog mutanta (ne moze da se izvrsi)

removed call to rs/etf/ts/storage/ResultStorage::set =+ NO_COVERAGE

removed call to rs/etf/ts/storage/ResultStorage::set = KILLED

removed call to rs/etf/ts/storage/ResultStorage::set = SURVIVED Covering tests
removed call to rs/etf/ts/storage/ResultStorage::set =+ SURVIVED Covering tests
replaced int return with @ for rs/etf/ts/calculator/Calculator::getResult » KILLED
removed call to rs/etf/ts/storage/ResultStorage::set = KILLED

changed conditional boundary =+ SURVIVED Covering tests
. negated conditional -+ KILLED
. replaced boolean return with true for rs/etf/ts/calculator/Calculator::isPositive + KILLED

- Timed out — predugo izvrSavanje, npr.
mutacijom se generisala beskonacna
petlja

RERBEEE B BERERREEERRERR

SECEEN TN LD T BEEEEEED T EE

=]

- Memory error — previse memorije iskoris¢eno, npr. call stack se prepunio u mutantu

- Run error — greska pri izvrSavanju mutanta

" Treba imati Sto manje mutanata Ciji je status Survived ili No coverage! Na osnovu
generisanog izvestaja treba dodati nove ili izmeniti postojece testove tako da se

mutacioni skor poveca. 15

MUTACIONO TESTIRANJE SA PIT-OM (5)

= Na kraju izveStaja su navedene sve mutacije koje su dolazile u obzir prilikom
generisanja mutanata. Podrazumevano ima 11 tipova mutacija i to su:

Active mutators

« CONDITIONALS BOUNDARY

1. Conditionals Boundary — mutacija relacionih operatora (<,

<= > >=) + FALSE RETURNS
)’ « INCREMENTS
« INVERT NEGS
« MATH

2. Empty Returns —vraca ,praznu” vrednost u zavisnosti od . NOLL RETORNS AT

« PRIMITIVE RETURNS
TRUE_RETURNS

tipa povratne vrednosti (0, prazan string, prazna lista, ...) - VOIDMETHOD, CALLS

3. False Returns —vraca False kao povratnu vrednost za
metode ako im je tip povratne vrednosti boolean

4. True Returns —vraca True kao povratnu vrednost za
metode ako im je tip povratne vrednosti boolean

5. Null Returns — vraca Null kao povratnu vrednost

6. Primitive Returns —vraca 0 ukoliko je tip povratne
vrednosti int, short, long, char, float ili double

16

MUTACIONO TESTIRANJE SA PIT-OM (6)

= Na kraju izveStaja su navedene sve mutacije koje su dolazile u obzir prilikom
generisanja mutanata. Podrazumevano ima 11 tipova mutacija i to su:

Active mutators

7. Increments — menja inkrement sa dekrementom i obrnuto

« CONDITIONALS BOUNDARY
« EMPTY RETURNS

(i++, ++i, i--, --i) » TALSE RETURNS
. MT_NEGS
8. Invert Negatives — uklanja minus kod negiranih . NOLL RETORNS AT
e :PRMITW’E_RETLTRNS
promenljivih (npr. —i se mutira u i) . VoI METHOD, CALLS

9. Math — mutacija aritmetickih operatora (+u-;-u+; *u/;/
u*; %u* &u|; | u& Mu&; <<u>>;>>u<<;>>>u<<)

10. Negate Conditionals — slicno mutaciji relacionih operatora,
ali se mutira u kontrauslov (==u !=; I=u==;>u<=;>=ux;
<uU>=;<=U>)

11. Void Method Calls — uklanjanje poziva metode koja nema
povratnu vrednost (void)

17

MUTACIONO TESTIRANIJE SA PIT-OM (7)

= Mutacije koje se uzimaju u obzir se mogu konfigurisati u pom.xml fajlu:

<configuration>
<mutators>
<mutator>PAKET MUTACIJA</mutator>

</mutators>
</configuration>

= Pri ¢emu paketi mutacija mogu biti:
- DEFAULTS (podrazumevano)
-OLD _DEFAULTS
- STRONGER
-ALL

18

KORISNI LINKOVI

= Mockito dokumentacija:

https://javadoc.io/doc/org.mockito/mockitocore/latest/org.mockito/org/mockito/Mockito.html

= PIT dokumentacija:

https://pitest.org/quickstart/

= Vise informacija o mutacionim operatorima PIT alata:

https://pitest.org/quickstart/mutators/

19

https://javadoc.io/doc/org.mockito/mockito-core/latest/org.mockito/org/mockito/Mockito.html
https://pitest.org/quickstart/
https://pitest.org/quickstart/mutators/

HVALA NA PAZNIJI! ©

PITANJA ?

Kontakt predavaca:
drazen.draskovic@etf.bg.ac.rs

nikolas@etf.bg.ac.rs

mailto:drazen.draskovic@etf.bg.ac.rs
mailto:nikolas@etf.bg.ac.rs

	Slide 1
	Slide 2: TEST DUBLERI (1)
	Slide 3: TEST DUBLERI (2)
	Slide 4: MOCKITO FRAMEWORK
	Slide 5: RAD SA MOCK OBJEKTIMA (1)
	Slide 6: RAD SA MOCK OBJEKTIMA (2)
	Slide 7: RAD SA MOCK OBJEKTIMA (3)
	Slide 8: RAD SA MOCK OBJEKTIMA (4)
	Slide 9: MUTACIONO TESTIRANJE
	Slide 10: PIT FRAMEWORK (1)
	Slide 11: PIT FRAMEWORK (2)
	Slide 12: MUTACIONO TESTIRANJE SA PIT-OM (1)
	Slide 13: MUTACIONO TESTIRANJE SA PIT-OM (2)
	Slide 14: MUTACIONO TESTIRANJE SA PIT-OM (3)
	Slide 15: MUTACIONO TESTIRANJE SA PIT-OM (4)
	Slide 16: MUTACIONO TESTIRANJE SA PIT-OM (5)
	Slide 17: MUTACIONO TESTIRANJE SA PIT-OM (6)
	Slide 18: MUTACIONO TESTIRANJE SA PIT-OM (7)
	Slide 19: KORISNI LINKOVI
	Slide 20: HVALA NA PAŽNJI! 

